ESL 4.4: Logistic Regression
Summary Model specifies $K - 1$ linear log-odds/logits: $$ \frac{P(G = k \lvert X = x)}{P(G = K \lvert X = x)} = \beta_{k0} + \beta_k^T x, k = 1,…, K - 1$$. Then $$ P(G = k \lvert X = x) = \frac{\exp(\beta_{k0} + \beta_k^T x)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + \beta_l^T x)} $$ and $$ P(G = K \lvert X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + \beta_l^T x)} $$, so the posteriors are in $[0,1]$ and sum to 1. ...